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GAUSSIAN CUBATURE 
AND BIVARIATE POLYNOMIAL INTERPOLATION 

YUAN XU 

ABSTRACT. Gaussian cubature is used to study bivariate polynomial interpola- 
tion based on the common zeros of quasi-orthogonal polynomials. 

1. INTRODUCTION 

Let Ild be the set of polynomials of total degree n in d variables, and let 
rld be the set of all polynomials in d variables. Let Y be a linear functional 
defined on id. If 2(g2) > 0 whenever g E I-d and g 54 0, then Y is 
called square positive. Throughout this paper, Y is always assumed to be 
square positive. A linear functional 

N 

(1~) IN (f Ak = i (Xk) Ak> ?, XkERid 
k=1 

is called a cubature formula of degree m if Y(ff) = IN (f ) whenever f E I-Id, 
and Y(f*) $ IN(f*) for at least one f* E fl+1. For a fixed m, it is known 
that N satisfies the lower bound 

N > dim rldm/21. 

We shall call the formulae that attain this lower bound Gaussian cubatures of 
degree m. 

For d = 1, the Gaussian quadratures of degree 2n - 1 are well known (cf. 
[2]), and those of degree 2n - 2 seem to be considered only of secondary in- 
terest in most books on numerical analysis. However, we refer to [1] and [3] 
for a discussion of degree-(2n - 2) quadratures and for historical remarks. For 
d = 2, the Gaussian cubatures of degree 2n - 1 exist only in very special cases 
(Mysovskikh [9], Moller [6]); it is the case of degree 2n - 2 that becomes inter- 
esting. Gaussian cubatures of degree 2n - 2 are characterized by Schmid [1 1] 
and Morrow and Patterson [7]. The knots of these cubatures are the common 
zeros of quasi-orthogonal polynomials. In some cases, these zeros are given 
explicitly. 

In this paper we consider the connection between Gaussian cubature of de- 
gree 2n - 2 and Lagrange interpolation. Our approach is based on our recent 
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development of multivariate orthogonal polynomials [17], which are given in ?2 
together with other preliminaries. In ?3 we study quasi-orthogonal polynomi- 
als, in particular, an explicit formula for Ak in (1.1) will be derived. Bivariate 
Lagrange interpolation based on the zeros of quasi-orthogonal polynomials will 
be discussed in ?4. The explicit formula for this Lagrange interpolation will be 
given and its L2 convergence will be discussed. 

2. PRELIMINARIES 

Let V[, be the space of polynomials of total degree n in two variables, and 
let 11 be the space of all polynomials in two variables. We denote by Y a real- 
valued linear functional defined on HI and square positive. Examples include 
any linear functional expressible as an integral against a positive measure. 

Two polynomials P and Q are said to be orthogonal with respect to Y 
if 5(PQ) = 0. For each n > 0, let Vn be the set of polynomials of total 
degree k that are orthogonal to all polynomials in "n - 1 together with the zero 
function. Then Vn is a vector space of dimension n + 1 . Clearly, the Vn 's are 
mutually orthogonal. In [17], we have studied the orthogonal polynomials of 
several variables from the point of view of orthogonality being given in terms 
of Vn rather than in terms of a particular basis of Vn . However, for the study 
of cubature formula the basis that contains only the monic polynomials 

(2.1) Pjn(xI, x2) = Xix2 i + qjn((xI, x2), qjn E ran-1, 0 < j < n, 

seems to be the most convenient one. We shall write 

(2.2) Pn(x) = [Po (x), Pin(x), P(x)f' x = (xl, x2). 

For convenience, we sometimes call Pn orthogonal polynomials. 
Throughout this paper, the notation A: i x j means that A is a matrix 

of size i x j. The n x n identity matrix is denoted by In. We denote by 
An,i:nx(n+1), i= 1,2,thematrices 

(2.3) An, 1 = [In I 0], An,2 = [?|I Id 

For a matrix P = (Pij) whose coefficients Pij belong to HI, we denote by 

Y(P) the matrix whose coefficients are the numbers Y(p,1). For Pn in (2.2) 
we define 

(2.4) Hn = Y(P~n ~n) 
Since our Y is a square positive linear functional, Hn is invertible for all 
n > 0. 

We now list the properties of the orthogonal polynomials that will be needed 
later. Most of these properties are proved in [17] for Rd., d > 2. 

1 0. Three-term recurrence relation: 

(2.5) XiP'n= An+1, iP'n+ I+ Bn,i 'n +Hn+ IA T A_%-ln, i = I 2, 

where 1_I =0 and Bn,1H, =Y(xXiPnn). 

This relation can be used to give a characterization of orthogonality [ 1 7]. Let 
Kn(.,.) denote the reproducing kernel 

n-I 

(2.6) Kn(Xy),=ZEk(x)Hkk(y), x, y E 11k2. 
k=O 
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20. For an arbitrary point t in R2 

(2.7) Kn(t, t) 1 = min yfp2), 

where the minimum is over all polynomials in 1ln-7I subject to the condition 
P(t) = 1. 

30 Christoffel-Darboux formula: 

(2.8) K0(x, y) = [An, iPn(X)]THn-1Pn-1(Y) -_pT (x)Hn-1J[An,1iPn(Y)] 
(2.8) Kn (X, Y) 

- 

n~~~- y 
i = ,2, where x= (xI, x2) and y= (Y1, Y2). 

For further properties of these orthogonal polynomials, we refer to [10, 14, 
17] and the references given there. The reproducing kernel has been used in the 
study of cubature in Mysovskikh [10] and Molter [5]. 

To describe the results on Gaussian cubatures of degree 2n - 2, we need 
the notion of quasi-orthogonal polynomials. Let {1FP}100 be a sequence of 
orthogonal polynomials with respect to S . A sequence of polynomials { Qn I}n=o 
is called quasi-orthogonal with respect to Y, if 

(2.9) Qn (x) = Pn (x) + FTHn111Pn- 1(x)) 

where Fn is a real Hankel matrix of size n x (n + 1). A matrix F is called a 
Hankel matrix if F = (yi+j). We note that Qn is orthogonal to Hn-2, and the 
components in Qn are monic polynomials in Hln . For the univariate theory of 
quasi-orthogonal polynomials, we refer to [1, 3]. The use of quasi-orthogonal 
polynomials in the study of cubatures has appeared in several papers [7, 11, 14]. 
The present vector-matrix formulation has been used in [14]. The following 
theorem was proved by Schmid [11] and Morrow and Patterson [7]. 

Theorem 2.1. There exists a Gaussian cubature of degree 2n - 2, 

(2.10) IN(f ) iknf(Xkn) N=( 2n )' 
k= 1 

if and only if Xkn, 1 < k < N, are the common zeros of the components in Qn 

We shall call the common zeros of the components in Qn zeros of Qn . The 
existence of zeros of Qn is also considered in [11] and [7], where polynomial 
ideal theory is used. We list the main results as 

Theorem 2.2. Let {Qn } be a sequence of quasi-orthogonal polynomials. Then 
Qn has N = dim Hln 1 distinct real zeros if and only if there exists a real matrix 
An: n x (n + 1), such that 

(2.11) X2An, i Qn -x An, 2Qn = An0nQ 

There are several equivalent conditions to (2.1 1). The most constructive one 
in [7, 11, 14] states that Fn in (2.9) has to satisfy a nonlinear matrix equation 
involving the coefficient matrices in (2.5). Unfortunately, this nonlinear matrix 
equation is quite complicated. It takes the form 

An, 1HnA T 2-An, 2HnA1 = Fn(AT 1Hn1 An 2-AT 2Hn An, 1)FT 
(2.12) -[Fn(An, -Bn2-An,2Bn, I)T 

- (An, 1 Bn, 2 - An 2Bn, 1)F] 
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If Y is centrally symmetric, i.e., Y(xix') = 0 if i + j is odd, this equation 
takes a simpler form, since then B,, i = 0 . The solution is found only in some 
special centrally symmetric cases; see the examples in ?4. 

The following properties of Hankel matrices will be used later. 
A matrix F,: n x (n + 1) is a Hankel matrix if and only if 

(2.13) An_ l, l FnA T= - , 2rnA1 

Furthermore, if Fn: n x (n + 1) is a Hankel matrix, then 

(2.14) An 'j-T = FnAT~ i = I1, 2 . 

3. QUASI-ORTHOGONAL POLYNOMIALS AND CUBATURES 

In this section we prove some properties of quasi-orthogonal polynomials. 
These properties will be used in the next section to study Lagrange interpolation. 
An explicit formula for lAkn in (2.10) will be derived as well. We begin with 

Theorem 3.1. Let {1P}n =' be the orthogonal polynomials in (2.1). Let Qn be 
the quasi-orthogonal polynomials in (2.9). Then 

(3.1 ) K (x y) [An, iQn (x)]TH-1 lP n-I (y) _PT I (x)H-- l [An i(Qn (Y)] 

i = 1, 2, where Kn(, *) is the reproducing kernel of {IPn} defined in (2.6). 
Proof. From the Christoffel-Darboux formula (2.8) and the definition of Qn in 
(2.9), we have 

(xi -yi)Kn (x, y) = [An, iPn (X)]TH1 P~n- 1 (Y) -PT 1(x)H,71[An, iPn(Y)] 

= [An, iQn (x)]TH,711IPni (y)H-IPnT (x)H,721 [An 1Q!(y)] 

- [An, H H-1 P1 (x)]T Hj-1IP (y) 

+ PFT I(x)H,-1An,A ,]HFT11Pn(y). 

Since Fn is a Hankel matrix, it follows from (2.14) that the last two terms 
cancel each other. E 

Corollary 3.2. Let Xkn and x1n be any two distinct common zeros of Qn . Then 

(3.2) Kn (Xkn , x1n) = 0. 
Proof. Since Xkn and x1n are distinct, they differ in at least one corresponding 
coordinate. Therefore, the result follows easily from Theorem 3.1. E 

Theorem 3.3. Under the assumption of Theorem 3.1, 

Kn (x, x) = PT_ I (x)H- 1 An Oi~iin (x) (3.3) K-(x,1x) = 

( * ) -~~-[An, i~ln (x)]T TH- l ~-P 1(X) x i = 1, 2, ~~ i= 1,2, n 

where 0i = 0/0xi denotes the partial derivative with respect to xi. 
Proof. Since pT_ (x)Hn-1 [An in (x)] is a scalar function, it is equal to its own 
transpose. Therefore we have from (3.1) that 

(xi -yi)Kn(x, y) = [An, i1nQ(X)]TH-1 [PEn- I(Y) -n-1(X)] 

-P I- l(x)H I1 An, i [Qn (Y) - Qn (x) ] 
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Thus, (3.3) follows by dividing the above identity by xi - yi and letting yi -* 

Xi. D 

Remark. We note that the right-hand side of (3.3) is independent of i. 

If x* is a zero of Q, and at least one partial derivative of Q, at x* is not 
zero, then we say x* is a simple zero of Q, . 

Corollary 3.4. Under the assumption of Theorem 3.1, the quasi-orthogonal poly- 
nomial Qn can have only simple zeros. 
Proof. Since our Y is square positive, Hk in (2.4) is a positive definite matrix. 
From (2.6) it follows that K,(x, x) > 0. Let x* be a zero of Qn . From (3.3) 
we have 

PT I (x*)Hn ll An,. iQi~n (X*) = Kn (x*, x*) > 0. 

Therefore, aiQn(x*) cannot be zero. aI 

The coefficients Akn, 1 < k < N in (2.10) are called the cubature weights 
associated with the Xkn . Our next theorem gives explicit formulae for Akn . 

Theorem 3.5. If the Gaussian cubature (2.10) exists, then the cubature weights 
are given by 

(3.4) Akn = [Knf(Xkn , Xkn) ] 

In particular, Akn > 0, and 

(3.5) 2kn = [IT-I (Xkn )HT- 1'&?Q(xkfl)] 

Proof. By definition of Kn(., ) in (2.6), the polynomial Kn(Xkn, *) belongs to 
112n-2. Therefore, from the Gaussian cubature formula and Corollary 3.2 we 
obtain 

n 

Y?[Kn (Xkn .)] = S )1nKn (Xkn E X1n) = Akn Kn (Xkn Xkn ) 
j=1 

On the other hand, by (2.6), 

Y[Kn (xkn *)] = [: (Xkn) Hj 
I 

(Pi 

n-1 

= 51FfT(Xkn)Hj71(IFVP) = 1 
j=0 

by the orthogonality of {TP} and the fact that Po = 1. Therefore, we have 
proved (3.4). Clearly, Akn > 0, and (3.5) follows easily from (3.4) and Theorem 
3.3. LI 

Remark. The identity (3.4) was proved by Mysovskikh [8], see also Schmid [12]. 
We include the proof here because it is simple and illustrative. The identity (3.5) 
is new. The positivity of 2kn also follows as a simple consequence of Theorem 
2.2 (see [12]). 

Corollary 3.6. Let Akn be as in (2.10). Then Akn = minZ(P2), where the 
minimum is over all P E lIn-1 subject to the condition P(xkn) = 1. 
Proof. Compare (3.4) with (2.7). LI 
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These formulas for Akn should be compared with those for weights in Gauss- 
ian quadratures (cf. [1, p. 66]). 

4. LAGRANGE INTERPOLATION 

The Gaussian cubature formulae are interpolatory (cf. [10, 12, 15]), hence 
their nodes may be taken to solve an interpolation problem. In this section we 
consider Lagrange interpolation based on the zeros of Qi. Throughout this 
section we assume that Q, is defined as in (2.9). 

If Xk, 1 < k < N, are distinct real points in R2, N = dimrlH , then 
we can consider the following Lagrange interpolation problem: For any given 
function f, find a polynomial P in [I-1-I such that 

P(xk) = f(xk), 1 < k < N. 

For general location of the xk it is known [4] that the Lagrange interpolation 
problem is not always solvable. It is almost solvable, i.e., it is solvable unless 
the nodes lie in some special configuration. Moreover, even if the interpolation 
is solvable, the explicit formula of the interpolating polynomial is in general 
not known. However, if the Xk 's are the zeros of Qi, we do have a complete 
solution. 

Theorem 4.1. Suppose Q, has N = dim Fin-_ distinct real zeros {Xkn}k=1. 
Then for any given function f, there exists a unique polynomial Lnf in lI-n -I 
which satisfies 

(4.1) (Lnf )(xkn) = f(xkn), 1 < k < N. 

Moreover, Lnf is given explicitly by 
N 

(4.2) Lnf = Ef(xkn)AknKn(, Xkn), 
k=1 

where Akn and Kn(*,*) are as in (2. 1 0) and (2.6). 
Proof. From Corollary 3.2 and Theorem 3.5 it is clear that Lnf in (4.2) satisfies 
(4.1). Since Kn(xkn, ') E Hn-1, we have Lnf E Hn-1 . We now prove that the 
interpolating polynomial is unique. By our assumption and Theorem 2.1, the 
Gaussian cubature of degree 2n - 2 based on the zeros of Qn exists. Suppose 
there exists another interpolating polynomial Lnf c Hn-1 that satisfies (4.1). 
Then (Lnf - Lnf )2 is in H2n-2 and takes the value zero at Xkn . By Gaussian 
cubature, 

N 

2[(Lnf- L f )2] = E Z kn(Lnf-Lnf)(Xkn) = . 
k=1 

Since Y is a square positive linear functional, it follows that Ln f = L* f . ?l 

The formula (4.2) is comparable to the corresponding univariate interpolat- 
ing polynomial. The polynomials 1kn = )knKn(., xkn), 1 < k < N, are the 
fundamental polynomials of the interpolation. They satisfy 

lkn (xjn) = 5kj. 

The following formula for 1kn seems to be interesting. It follows from (3.1) 
and (3.2). 



GAUSSIAN CUBATURE AND BIVARIATE POLYNOMIAL INTERPOLATION 553 

Corollary 4.2. Let Xkn = (x), 2)), x = (x, x2). Then 

n-1(Xkn)H-1 AniQn(x) 
(4.3) lkn (X) = ~1xf),1n -inxfl,-~ Pn-I (Xkn )Hn-' An, iO~i~n (Xkn) (xi -Xkn) 

We note that this formula is independent of i. In the proof of Theorem 4.1 
we have used Gaussian cubature. In the univariate theorem it is the other way 
around, i.e., the Gaussian quadrature is usually proved by integrating the inter- 
polating polynomial. It would be interesting if one could prove the existence of 
the Gaussian cubature this way. 

Next we consider the convergence behavior of Lnf to f . We assume that 
Y is expressible in the form of 

(4.4) Y(f) = jf(x)w(x)dx, 
2 

where w is a nonnegative function and f w (x) dx = 1 . By L2 we denote the 
space of Lebesgue measurable functions f on the support set of w for which 
the norm 

lIf I|w,2 = Jf(X)12W(x) dx 

is finite; C(Q) denotes the space of continuous functions on a compact set Q . 
Let {lPn I} ?O be the orthogonal polynomials associated with 2 , and Sni = 
Sn (w, f) be the nth partial sum of the Fourier orthogonal expansion of f in 
terms of {IPn }I cO . Then Sn f E 1ln -I and 

n-l 

Snf= ZkTHr f kfw dx. 

k=O 

By Bessel's inequality (cf. [17]), 

(4.5) IISnf I1w,2 < lIf I|w,2 

Theorem 4.3. Let Ln f be as in Theorem 4.1. Then for any given function f, 

(4.6) IILnfI1w,2? max If(Xkn)I 
I1<k<N 

Proof. First we write 

(4.7) IILnf 11w,2 = SUp J(Lnf)gwdx, 
g 

where the supremum is taken over those g satisfying IIgI w,2 = 1 . From our 
assumption and Theorem 2.1, the Gaussian cubature of degree 2n - 2 exists. 
Therefore, by orthogonality, the Gaussian cubature (2.10), and the Cauchy in- 
equality, we have 

J(Lnf )gwdx = J(Lnf)(Sng)w dx = Akn(Ln f )(Xkn)(Sn )(Xkn) 

k=I1 

? N ]}1/2 N } 1/2 

< 1 E Akn [ff(Xkn ) ] 1 Akn [ (Sn 9) (Xkn ) ]2, 
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Since Akn > 0 and EN~- ikn = 1, where 1 is the function taking constant 
value 1, applying the Gaussian cubature to (Sng)2, we then obtain 

f(LNf)gw dx < sup If(Xkn)| ISngjjw,2 
J1<k<N 

The desired result now follows from (4.5) and (4.7). 0 

The idea used in the proof of this theorem goes back to Marcinkiewicz and 
Zygmund in the context of trigonometric interpolation. This method may also 
work for LP convergence, but first LP convergence of the Snf has to be 
solved. For the univariate case, see [ 16] and the references given there. Theorem 
4.3 shows that Ln f is a bounded operator from L2 to C(Q), where Q is the 
smallest compact set that contains all zeros of Qn Vn > 0. In general, the 
location of Xkn is not known. Even when w has finite support, Xkn may not 
all be in the support set. This is the reason for our assumptions in the next 
result. 

Corollary 4.4. Let Ln f be as in Theorem 4.1, and W denote the support set of 
w. If Q U W is compact, then 

lim IlLnf-f 112,w = 0 Vf C(Q U W). n-+oo 

Proof. This is a standard application of the Weierstrass theorem, since for any 
Pn E [In-1, 

JlLnf-an 112,w < JLn(f- Pn)112,w + 1f- PnII2,w 
< 11f-Pniloo + 11f-PnII2,w 

by Theorem 4.3, where I Ic, is taken over Q . E 

Finally, we note that our theorems on Lagrange interpolation depend on the 
assumption that Qn has N = dim1ln7- distinct real zeros, which is also a 
necessary and sufficient condition for the existence of Gaussian cubatures of 
degree 2n - 2. As we mentioned before, this assumption has been verified only 
in some special cases (see [7, 13]). We give one example from [7]. 

Example. For the region [-1, 1]2 with weight 

W(X, y) = (1 -X2)1/2(1 _ y2)1/2 

the orthogonal polynomials in (2.1) are 

Pn7(x, y) = 2 n-j(y) 

where the Uj's are the Chebyshev polynomials of the second kind. The com- 
ponents Qjn, 0 < j < n, of Qn are given by 

2nQjn(x, y) = Unj(x)Uj(y) + Uj(x)Un--1 (Y) . 

The Fn in (2.9) takes the form Fn = 2 * 4-n(En 0) , where 

En- l . L 
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By means of a trigonometric identity, the common zeros of Qjn are given ex- 
plicitly in [7]. They are all located inside [-1, 1]2. Other choices of Fn in 
(2.9) may also lead to N distinct real zeros of Qn; the complete solution for 
this weight function is given in [13]. 
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